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Abstract

From a discrete system F of applied forces given by a collection of vectors Fk applied to corresponding
points Pk\ a new system QF can be obtained through a rotation by Q of all Fk without changing Pk[ In this
note we examine invariant properties of F under arbitrary rotations[ We also examine invariant properties
of the family QF when all rotations share a _xed axis\ giving a coordinate!free approach to the results of
Kolosov "0816#[ Þ 0888 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Consider a system of N forces each one parallel to the direction g and with intensity fk\
k � 0\ [ [ [ \ N[ Thus\ Fk � fkg and if we assume SN

k�0 fk � 9\ we know that

r �

s
N

k�0

fkrk

s
N

k�0

fk

"0#

delivers a point C "on the central axis of the system#\ given by its position vector r relative to an
origin O in the Euclidean space E[ Here\ as usual\ we are considering force as an applied vector\
consisting of a pair "Fk\ Pk#\ with rk the position of Pk relative to O[

We recall that r depends on Fk as well as on rk\ and in Mechanics sometimes what matters is the
subjacent structure of a set of sliding vectors[ In this case\ the central axis concept plays an
important role[ Recall that the central axis is the "straight# line de_ned by points P for which
MP � lR\ i[e[\ the total moment MP with respect to P is parallel to the resultant R "R � 9\
R � SN

k�0 Fk#[
The point C\ the center of a system of parallel forces\ satis_es]

� Corresponding author[ E!mail] lcmÝserv[com[ufrj[br



L[C[ Martins\ R[F[ Oliveira : International Journal of Solids and Structures 25 "0888# 4276Ð42864277

"a# for rk the position of Pk relative to C\ SN
k�0 fkrk � 9^ C is the unique point with this property^

"b# C is invariant under rotations] it does not change if we consider a new system "QFk\ Pk#\ where
Q is a _xed proper orthogonal tensor[ Thus\ the central axes of "Fk\ Pk# and "QFk\ Pk# meet at
C[

In the dynamic of rigid bodies\ under a constant gravitational force _eld\ the fact that C coincides
with the center of mass simpli_es the analysis of the motion[ Relatively to a rigid body the
gravitational force is a {live load|\ as it is seen to rotate as the body rotates in space[

We consider the translation space V of E endowed with a vector product ×[ We de_ne the
tensor product a & b of two vectors by the rule "a & b#u �"b = u#a of its action on an arbitrary
vector u\ where b = u is the scalar product of b and u[ From de_nition it follows that

"a & b−b & a#u � −"a×b#×u\

for all a\ b\ u $ V[
The vector space of all linear transformations of V into V is denoted by Lin[ We call tensor any

element of Lin[ Thus a & b is a tensor[ The transpose of A $ Lin is denoted AT and "a & b#T � b & a[
The astatic load of the system relative to a point P is "Truesdell and Noll\ 0881\ for example#

AP � s
N

k�0

rk & Fk\

with P¦rk � Pk\ and we see that the moment of the system relative to P equals minus twice the
vector corresponding to the skew part of AP " for any skew tensor W its vector w is de_ned by
Wu � w×u holding for all u $ V#[ Thus\ if MP is the system moment relative to P\ we have\ for
any u $ V\ "AT

P−AP#u � MP×u[
If we compute the astatic load of a parallel system relative to its center we have

AC � s
N

k�0

rk & fkg � 0 s
N

k�0

fkrk1& g � 9[

In this note we are going to analyse "arbitrary# systems of forces

F � ""Fk\ Pk#\ k � 0\ [ [ [ \ N#

and their corresponding rotated systems

QF � ""QFk\ Pk#\ k � 0\ [ [ [ \ N#\

with Q a rotation "orthogonal and proper#[ We will investigate the invariant properties of the
family QF in general\ i[e[\ those properties that are shared by all families QF\ and in particular
those invariant properties under the restricted condition of all rotations having the same axis[

We start our analysis considering systems F with vanishing astatic load relative to a point[ In
this case QF share all nice geometric properties of a system of parallel forces as stated in our _rst
theorem[

In Sections 3 and 4 we recall the generalized notion of center C for an arbitrary system F and
we de_ne another remarkable point which we call the astatic center S[ We show that S is invariant
under rotations\ we establish necessary and su.cient conditions for the general and restricted



L[C[ Martins\ R[F[ Oliveira : International Journal of Solids and Structures 25 "0888# 4276Ð4286 4278

invariance of C\ obtaining along this process an estimate for the distance between C and S[ Finally
we reconsider the work of Kolosov "0816# under our coordinate free approach[

1[ Properties of the astatic load

Consider a system of forces F and its astatic load AP � SN
k�0 rk & Fk relative to P[ As the

moment of F relative to P\ MP � SN
k�0 rk×Fk\ is equal to minus twice the vector corresponding

to the skew part of AP\ the astatic load embodies more information on the geometry of the system
than its moment[ Because the moment does not change for the subjacent structure of a set of
sliding vectors\ we expect that the astatic load will play an important role in our analysis[ The
following lemma is easily proved[

Lemma "transport of the astatic load#[ If u is the position of Q relative to P\ i[e[\ Q � P¦u\ then

AP � AQ¦u & R\ "1#

where R � SN
k�0 Fk[

This formula shows that AP � AQ in systems with null resultant[ Moreover\ in contrast with the
case of the transport of the moment\ if AP � AQ for P and Q distinct\ then R � 9 follows necessarily[
We can consider the astatic load as a tensor _eld de_ned over all of E[ Thus the vanishing of the
resultant R implies that the astatic load is spatially constant "and conversely#[

From now on we admit that F always has non!zero resultant R[
Returning to a system of parallel forces F\ we observe that the center C of the system also has

the following two properties]

"a# It is a point on the central axis for which the trace of AC is zero]
"b# It is a point C for which the astatic load has minimum norm[

We will show that if we consider "a# or "b# as de_nin` a point in E for a general system of forces
F\ the de_nition makes sense and delivers each one a single point for F\ usually two distinct
points[ We name them C "the center of F# and S "the astatic center of F#\ respectively[

Given F\ consider the rotated system QF[ Let AP be the astatic load of F with respect to P[
From the identity a & Qb �"a & b#QT\ it follows that the astatic load A"Q#P of QF with respect
to P is

A"Q#P � APQ
T[ "2#

This shows how the astatic load changes with the rotation\ in their places\ of the forces of F[

2[ Systems with vanishing astatic load

For a parallel system F\ the central axes of all QF intersect at C[ Does it hold for an arbitrary
F< To see it\ assume that R � SN

k�0 Fk � 9 and that the central axes of all rotated systems intersect
at a point P[ Then the skew part of APQ

T has its vector parallel to QR\ i[e[\

"APQ
T−QAT

P#QR � 9[ "3#
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This is equivalent to "QAT
PQ#R � APR for all rotations Q[ But this holds if and only if AP � 9\ as

it is shown below[

Lemma 0[ Let R � 9 be a vector and A a tensor\ i[e[\ A $ Lin[ Then "QATQ#R � AR for all rotations
Q if and only if A � 9[

Proof[ As A � 9 implies trivially that "3# holds\ we must prove the necessity[ For Q � I\ where I

is the identity\ we have ATR � AR[ Choose u $ V^ then QATQR = u � ATR = u[ In particular\ if u is
not parallel to R and if Q has axis parallel to u\ i[e[\ Qu � QTu � u\ we have AT"QR−R# = u � 9[
But as QR−R\ for all Q|s _xing u\ generates the subspace orthogonal to u\ it follows that u is an
eigenvector for A[ Thus\ A is a multiple of the identity and now "3# clearly implies A � 9[

As a corollary of this lemma\ it follows that if AQT is symmetric for all rotations Q\ then "3#
holds for any choice of R and A � 9 follows as a consequence[ We explicitly state]

Corollary 0[ If A $ Lin and if AQ is symmetric for all rotations Q\ then A � 9[

Hence if for a system F we de_ne a point in E as the common intersection of the central axes
of families QF\ this de_nition makes sense only for those particular systems admitting a zero
astatic load[ These systems can be neatly characterized through the astatic load relative to an
arbitrary point P[ As AP¦u & R � 9 for a suitable non!zero vector u\ AP has rank one and its
kernel is orthogonal to R[

For the following result\ we recall that for any system F the inner product of its resultant R

with the moment MP of F relative to any point P is constant] R = MP is the scalar invariant of F\
in this particular case invariant referring to a constant in space[

Theorem 0[ Let F be a system for which R � 9[ Then the following are equivalent]

"i# The central axes of all QF intersect at a common point[
"ii# Relative to a point P\ the moments of all QF vanish[
"iii# The scalar invariant of all QF is zero[
"iv# The astatic load of F equals zero at one point[

Proof[ We know that "i#\"iv#[ As "ii# means that APQ
T is symmetric for all rotations\ implying

AP � 9 by Corollary 0\ "ii# and "iv# are equivalent too[
We recall that any tensor F $ Lin admits a decomposition F � VR as the product of V symmetric

times a rotation R "see Martins and Podio!Guidugli\ 0879#[ Also we recall that such decomposition
is unique if we assume det F × 9 and V positive\ as in the classical use of the polar decomposition
theorem in continuum mechanics[

For "iii# we start observing that for any point P\ APQ
T is symmetric for a suitable rotation^ thus

the whole family of systems QF can have constant scalar invariant M = R\ if it is zero[
To say that QF has zero scalar invariant means that the axis of APQ

T−QAT
P is orthogonal to

QR[ If we choose an orthogonal basis "e\ f\ R# for V\ then

"APQ
T−QAT

P#Qe � aQR\ "4#

holds for all rotations "where a depends on Q and e#\ because the moment vector lies in the plane
generated by "Qe\ Qf#[ In "4# the dot product with Qf gives

APe = Qf � AT
PQe = f[ "5#
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For all rotations Q? with axis e\ "5# reduces to APe = Q?f � AT
Pe = f[ The right!hand!side being

constant\ this implies that APe is normal to the plane generated by all Q?f[ Thus APe is parallel to
e for any vector orthogonal to R[ For a rotation Qý of angle p:1 along R for which Qýe � f and
Qýf � −e\ one gets from "5# −APe = e � AT

Pf = f\ showing that APe � 9[ Using this information we
can rewrite "4# as

−AT
PQe � aR\ "6#

holding for an arbitrary rotation[ This means that the range of AT
P is contained in the span of "R#\

implying AT
P � R & u for some vector u[ Hence the astatic load of any such system vanish for some

point in E[ Thus\ "iii# and "iv# are equivalent[
Another geometrically nice property for a system F with moment MP relative to a point P is to

suppose that QMP is the corresponding moment "relative to P# for the system QF\ for any rotation
Q^ this implies that "APQ

T−QAT
P#QMP � 9 holds for all rotations Q[ By Lemma 0\ if MP � 9 it

follows that AP � 9\ contradicting MP � 9[ But if MP � 9\ QMP � 9 and now we have by hypoth!
esis APQ

T symmetric for all rotations[ Thus AP � 9[ Observe that it makes sense to state this
property even if R � 9[

Recall that F is said to be an equilibrated system if both R � 9 and M � 9 "R � 9 implies that
the moment M is the same for all points#[ Thus\ QF is also equilibrated for all rotations Q if and
only if R � 9 and the astatic load is zero for one point "hence for all points#[

Given P and Q distinct points in E\ let Q � P¦u[ The system de_ned by S � ""−fu\ P#\ " fu\ Q##
has resultant R � 9 and its "constant# astatic load is given by u & fu � fu & u[ Thus S is an
equilibrated system\ and from the clear additive property for the union of two systems of forces\
for any E $ Lin\ E symmetric\ we can associate an equilibrated system F with corresponding astatic
load equal to E[

On the other hand\ if we choose v a vector orthogonal to u\ v � 9\ the system C � ""−fv\ P#\
" fv\ Q## has astatic load A � u & fv � fu & v[ Systems as C " f � 9# are usually called a couple[
Another couple is given by C? � "" fu\ P#\ "−fu\ N## with N � P¦v[ Its astatic load is
−v & fu � −fv & u\ and for the system C k C?\ its astatic load is f"u & v−v & u#\ a constant skew
_eld[ Now clearly to any W $ Lin\ W skew symmetric\ we can associate a system F with null
resultant and astatic load equal to W[ Finally we observe that if F is an equilibrated system\ we
can join to F three equilibrated systems of the form S � ""−fu\ P#\ " fu\ P¦u## in order to obtain
a new equilibrated system with corresponding zero astatic load[

3[ The astatic center S

The astatic center of F "R � 9# is the unique point S at which AS has minimum Euclidean norm[
Choose P in E[ As AP−s & R is the astatic load for Q � P¦s and because the set of tensors u & R

with u varying on V is a subspace of Lin\ the problem of minimizing the norm of the astatic load
has a unique solution given by the condition] _nd s $ V such that "AP−s & R# ="u & R# � 9 holds
for all u[ Thus from

tr ð"AP−s & R#"R & u#Ł �"APR−R1s# = u � 9

we get
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s �
APR

R1
\ "7#

for the position of S with respect to P[ In particular\ if AS is the astatic load of F with respect to its
astatic center\ "7# shows that ASR � 9[ Moreover\ as for QF\ A"Q#S � ASQ

T and the corresponding
resultant is QR\ ASR � ASQ

TQR � 9 shows that the astatic center is invariant under rotations[ In
general the astatic center does not belong to the central axis of the system[

4[ The center of an arbitrary system of forces

The center C of a system F "R � 9# is de_ned as the unique point C on its central axis at which
AC is traceless[ Assume "AC−AT

C#R � 9 and tr AC � 9[ Referring to any point P with C � P¦r we
have

"AP−r & R−AT
P¦R & r#R � 9

tr AP � r = R 7[ "8#

The moment condition gives "AP−AT
P#R−R1r¦"r = R#R � 9[ Thus

r �
0

R1
ð"AP−AT

P#R¦"tr AP#RŁ\ "09#

gives the position of C relative to P as a function of AP[
As we know that two force systems are said to be statically equivalent if they have the same

resultant force R and produce the same total moment relative to a point P $ E "hence equal to total
moment about any point of E#[ When R � 9\ any system F is statically equivalent to a {force!
wrench|\ a system comprising a force R acting on any point of the central axis of F and a couple
C with its moment equal to the total moment MP of F with respect to any point P on the central
axis of F] MP::R[

From "09# the point C? � P¦"0:R1#"AP−AT
P#R belongs to the central axis of F[ Moreover\ as

"AP−AT
P#R is orthogonal to R\ C? is the point of the central axis at minimum distance from P[

We know that the astatic center is invariant under rotations[ As ASR � 9\ the distance d from S
to the central axis of F is

d �
0

R1
>AT

SR>\

which is not invariant under rotations[ However the symmetric and non!negative tensor ASA
T
S is

clearly invariant[
Let L be the largest eigenvalue of ASA

T
S [ Then the distance d"Q# from S to the central axis of

QF can be estimated by

d"Q# ¾
zL
R

\

and the central axis of all rotated systems QF cross a ball with center at S and radius "0:R#zL[
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For rotations Q for which ASQ
T is symmetric\ d"Q# � 9 and M"Q#S � 9[ The inner product

M"Q#S ="QR:R# depends on the rotation Q\ and to analyse this dependence we assume AS � V

symmetric\ without loss of generality[ We call g the unit vector of R\ i[e[\ R � Rg[ Because VR � 9\
let "e\ f\ g# be an orthonormal basis of V delivering the spectral decomposition of V[ We assume
this basis positively oriented and we write V � le & e¦bf & f[

Each skew tensor W is related to w $ V through the condition w×u � Wu holding for all
u $ V[ If Wi is related to wi then 1w0 = w1 � W0 = W1 holds[ Let u\ v and w be vectors[ Then
Q"u×v# � Qu×Qv and Qw×u � Qw×QQTu � Q"w×QTu# � QWQTu holding for all rotations
Q shows that if w is related to W then Qw is related to QWQT[

Let G be the skew tensor related to g[ Then

1M"Q#S = Qg �"A"Q#T
S−A"Q#S# = QGQT

and as G � f & e−e & f and A"Q#S � VQT\ a simple computation shows that

1M"Q#S = Qg � −1l"e = Qf#¦1b"f = Qe#[

By choosing an appropriate Q we conclude that

−=l=−=b= ¾ M"Q#S = Qg ¾ =l=¦=b=\

both extreme values attainable for rotations Q preserving the direction "not the sense# of g\ and
for which QF is statically equivalent to a wrench through the astatic center S[

The mechanical signi_cance of this result is clear[ Let a rigid body B be subjected to a system F
of dead loads "i[e[\ the vector Fk is constant# always applied to points Pk _xed in B[ Suppose the
astatic load relative to the center S of F\ _xed relatively to B\ small with respect to the product of
R with a characteristic distance[Then to admit the load system equivalent to its resultant applied
to S can be justi_ed[

Finally let us see the simpli_cations gained in the case of a planar system of forces[ As all Pk

and all Fk are lying in a plane\ the system is statically equivalent to a single force acting in this
plane[ For the center C\ AC is symmetric and has the direction normal to the plane in its kernel[
Thus the spectral representation of AC is AC � le & e−lf & f\ for "e\ f# an orthonormal basis for
the plane[ From C\ the position of the astatic center S is given by R1s � ACR\ showing that C and
S coincide if and only if AC � 9[ We recall that if Rf is a re~ection in the plane along the axis e\
i[e[\ Rfe � e\ then for any rotation Q\ RfQ is a re~ection and RfQ � QTRf holds\ as a simple
computation shows it[ Thus\ if Q corresponds to a rotation of angle 1u\ and if S is a rotation of
angle u\ RfQ � RfSS � STRfS is a re~ection of axis STe[

The expression of AC just obtained\ namely AC � le & e−lf & f shows that AC is a multiple of
a planar re~ection[ Moreover ACQ

T is again a multiple of a planar re~ection\ whenever Q has axis
orthogonal to the plane[ Thus all central axes of the restricted family QF meet at C[ This result
will be generalized in Section 6 "Corollary 1#[

5[ Restricted invariance of the center of forces

In this section we will investigate the invariance of the center C of a family QF under the
restriction that all Q have the same axis[ Thus\ let us suppose that the center C of F is invariant
under rotations about a unit direction g[ The assumed invariance implies
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"ACQT−QAT
C#QR � 9\ "00#

tr"ACQT# � 9[

As Q has the representation Q � I¦"sin u#G¦"0−cos u#G1\ where the vector of the skew tensor
G is g\ we conclude that 9 � tr"ACQ

T# � tr AC¦"sin u#AC = G¦"0−cos u#AC = G1[ This implies
AC = G � 9 and AC = G1 � 9[ Recall that if h is the vector of the skew tensor H\ then 1g = h � G = H[
In particular if MC is the moment of F with respect to C\ as MC is the vector of AT

C−AC\ then
1MC = g �"AT

C−AC# = G � −1AC = G[ Thus\ AC = G � 9 is equivalent to MC = g � 9[ As
G1 � g & g−I\ AC = G1 � 9 is equivalent to ACg = g � 9[ Hence MC = g � 9 and ACg = g � 9 are
necessary conditions for the assumed invariance[ As these were obtained from "00#1 we do not
expect that they are su.cient[ In fact\ if we change the second condition for the stronger condition
ACg � 9\ then MC = g � 9 and ACg � 9 are shown su.cient for the restricted invariance as we start
to prove[

Suppose MC � 9\ implying that AC is symmetric[ From "00#0 ACR � QACQR implies
ACR = g � ACQR = g\ or "R−QR# = ACg � 9[ If R is not parallel to g we can conclude that ACg is
parallel to g\ thus\ equal to zero because ACg = g � 9^ but if R and g are parallel\ from "00#0

ACR � QACR shows that ACg is parallel to g[ Hence ACg � 9 in both cases and AC acts on the
normal plane to g as a multiple of a plane re~ection[ In fact\ because g belongs to the kernel of AC

and AC is traceless\ it can be written as AC � le & e−lf & f for some l and for its eigenbasis
"e\ f\ g#[ On the other hand\ AC � le & e−lf & f satis_es both eqns "00#\ corresponding to M � 9

for all QF[
Suppose now M � 9[ From M = g � 9 and because M and R "�9# are parallel\ we must have

R = g � 9 as well[ From "00#0 ACR � QAT
CQR\ and as ACR � AT

CR we have AT
CR = g � AT

CQR = g\ or
ACg ="R−QR# � 9[ Hence ACg is parallel to g and the necessary condition ACg = g � 9 gives
ACg � 9[

Thus\ whenever "00# holds for all rotations\ we have ACg � 9 and AC = G � MC = g � 9 as necess!
ary conditions for the invariance of C for the restricted family QF[ We already know that they
are su.cient if MC � 9[ Now we show that they are su.cient also if MC � 9[ As MC and R are
parallel by hypothesis\ R = g � 9^ as R is not zero if we choose an orthonormal basis "e\ f\ g#\ with
e parallel to R\ the skew part of AC is a multiple of g & f−f & g[ Thus\ AC � b"g & f−f & g#¦E\
where E is the tensor E � 0

1
"AC¦AT

C#[ From 9 � ACg � −bf¦Eg we have E � E?¦bf & g¦bg & f

for some symmetric and traceless E? for which E?g � 9 "E? is a multiple of a plane re~ection on the
eÐf!plane#[ Thus AC � E?¦1bg & f and because both E? and 1bg & f satis_es "00# the condition is
su.cient and we have]

Theorem 1[ For a system F let g be a unit vector\ G the skew tensor associated with g\ and let AC

be the astatic load relative to its center[ In addition to its de_ning properties\ namely trAC � 9
and "AC−AT

C#R � 9 "or the moment MC relative to C parallel to R#\ then ACg � 9 and AC = G � 9
are the necessary and su.cient conditions for the invariance of the center of the family QF\ where
all Q have g as axis[

Observe that if AC is not symmetric\ R = g � 9 is necessary for the restricted invariance[
The proof that ACg � 9 and MC = g � 9 are su.cient for the restricted invariance relies on

expressing AC on a special basis of V[ Let us now see how this condition is translated if we
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represent AC in an orthonormal basis "ek# with e2 being the common axis of all rotations[ If AC is
symmetric\ we know that M � 9 for all QF[ But ACe2 � 9 and tr AC � 9 imply that

ðACŁ � &
a b 9

b −a 9

9 9 9'
is necessarily the representation of AC[ In this case the components "X\ Y\ Z# of R � Xe0¦Ye1¦Ze2

can be arbitrary[
In the case when AC is not symmetric\ Z � 9 is a necessary condition for the restricted invariance

and MC is parallel to R[ Then we know that AC can be represented as AC � E?¦1bg & f\ with
g � e2 and f orthogonal to both g and the direction of R[ Moreover\ E? is symmetric\ traceless and
satis_es E?e2 � 9[ Thus\ as "Y\ −X\ 9# is parallel to f\ AC � E?¦d"e2 &"Ye0−Xe1## for a constant
d and the corresponding matrix representation of AC is

ðACŁ � &
a b 9

b −a 9

dY −dX 9'[
Both representations can be recorded as above with the understanding that d � 9 if and only if
MC � 9[ As AC is the astatic load relative to the system center\ MC � dXe0¦dYe1 reminds us that
when d � 9\ then necessarily Z � 9[

Finally\ as

ðQŁ � &
c −s 9

s c 9

9 9 0'
is a rotation with axis e2 "cos u � c\ sin u � s#\ a simple computation shows that the last row of ACQ

T

is "d"Xs¦Yc#\ −d"Xc−Ys#\ 9#\ while QR equals "Xc−Ys\ Xs¦Yc#\ showing that the modulus of
M"Q#C does not change[

6[ The approach of Kolosov

We now comment on the work of Kolosov "0816# under a new perspective[ In it\ necessary and
su.cient conditions for the invariance of C under rotations about a _xed direction are given in
terms of four equations relating the components of the resultant R\ and the components of the
astatic load with respect to the origin of a Cartesian frame where the z!axis coincides with the axis
of the rotations[ They are]

XAzz � ZAzx\

YAzz � ZAzy\ "01#

Z"Axx¦Ayy# � XAxz¦YAyz\

Z"Axy−Ayx# � YAxz−XAyz[
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He establishes these formulae by use of complex numbers to express the x! and y!coordinates
of C\ the z!coordinate of C\ and the scalar invariant of F in terms of the forces of F[ Now it is
easy to treat the action of Q as a multiplication by eiu and the four conditions express the invariance
of C[

But if the system F is given\ AP\ "09# and the transport of the astatic load give AC[ Hence\ from
ACg � 9 and AC = G � 9 we get four necessary and su.cient conditions for the restricted invariance[
Kolosov formulae give no hint for the structure of AC\ but it turns out that ACg � 9 and AC = G � 9
expressed in coordinates using the formula\ give a rather intricate system of four non!linear
relations for the coordinates of AP and R[ We can explore the canonical form for AC in order to
get "01# explicitly by considering the cases Z � 9 and Z � 9 separately[ As a matter of fact\ when
Z � 9 we have Axz � Ayz � Azz � 9 as the only conditions imposed by "01#[

Let us start supposing Z � 9[ From our previous analysis we are looking for r with components
x\ y\ z such that the matrix of AC given by

&
Axx−xX Axy−xY Axz

Ayx−yX Ayy−yY Ayz

Azx−zX Azy−zY Azz
'

corresponds to the astatic load relative to the invariant center of F[ Thus the last column has to
be zero[ We can impose tr AC � 9 and the symmetry of the 1×1 submatrix de_ned on the upper
corner of AC by solving a 1×1 system "we need X1¦Y1 � 9\ which holds by hypothesis#[ It is also
easy to see that z can be chosen such that "Azx−zx#X � −"Azy−zY#Y to have the corresponding
moment parallel to R[ Thus\ if Z � 9\ it is enough to verify that APg � 9[

Now suppose Z � 9[ As before we look for r such that AC has the corresponding canonical
form[ We have now AC given by

&
Axx−xX Axy−xY Axz−xZ

Ayx−yX Ayy−yY Ayz−yZ

Azx−zX Azy−zY Azz−zZ'[
Choose now x\ y and z to meet the requirement of null column\ x �"Axz:Z#\ y �"Ayz:Z#\ and
z �"Azz:Z#[ From Azx−"Azz:Z#X � 9 and Azy−"Azz:Z#Y � 9 we reproduce "01#0\1[ From the sym!
metry Ayx−"Ayz:Z#X � Axy−"Axz:Z#Y we get "01#3 and the third equation comes from the zero
trace condition] Axx−"Axz:Z#X¦Ayy−"Ayz:Z#Y � 9[

Finally we state explicitly a consequence of Theorem 1\ whose proof is now easy after the later
development[

Corollary 1[ If all forces in the system F with resultant R � 9 are parallel to a _xed plane\ then
the system center C of F and of all QF\ for restricted rotations Q along axis normal to the plane\
coincide[

Proof[ As AP � SN
k�0 rk & Fk and as APg � 9 for g orthogonal to the plane\ the result follows[
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